Are tyrosine kinases involved in mediating contraction-stimulated muscle glucose transport?

نویسندگان

  • David C Wright
  • Paige C Geiger
  • Dong-Ho Han
  • John O Holloszy
چکیده

Muscle contractions and insulin stimulate glucose transport into muscle by separate pathways. The contraction-mediated increase in glucose transport is mediated by two mechanisms, one involves the activation of 5'-AMP-activated protein kinase (AMPK) and the other involves the activation of calcium/calmodulin-dependent protein kinase II (CAMKII). The steps leading from the activation of AMPK and CAMKII to the translocation of GLUT4 to the cell surface have not been identified. Studies with the use of the tyrosine kinase inhibitor genistein suggest that one or more tyrosine kinases could be involved in contraction-stimulated glucose transport. The purpose of the present study was to determine the involvement of tyrosine kinases in contraction-stimulated glucose transport in rat soleus and epitrochlearis muscles. Contraction-stimulated glucose transport was completely prevented by pretreatment with genistein (100 microM) and the related compound butein (100 microM). However, the structurally distinct tyrosine kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyridine and herbimycin did not reduce contraction-stimulated glucose transport. Furthermore, genistein and butein inhibited glucose transport even when muscles were exposed to these compounds after being stimulated to contract. Muscle contractions did not result in increases in tyrosine phosphorylation of proteins such as proline-rich tyrosine kinase and SRC. These results provide evidence that tyrosine kinases do not mediate contraction-stimulated glucose transport and that the inhibitory effects of genistein on glucose transport result from direct inhibition of the glucose transporters at the cell surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle.

The signaling mechanisms that mediate the important effects of contraction to increase glucose transport in skeletal muscle are not well understood, but are known to occur through an insulin-independent mechanism. Muscle-specific knockout of LKB1, an upstream kinase for AMPK and AMPK-related protein kinases, significantly inhibited contraction-stimulated glucose transport. This finding, in conj...

متن کامل

Isoform-specific regulation of 5' AMP-activated protein kinase in skeletal muscle from obese Zucker (fa/fa) rats in response to contraction.

Glucose transport can be activated in skeletal muscle in response to insulin via activation of phosphoinositide (PI) 3-kinase and in response to contractions or hypoxia, presumably via activation of 5' AMP-activated protein kinase (AMPK). We determined the effects of insulin and muscle contraction/hypoxia on PI 3-kinase, AMPK, and glucose transport activity in epitrochlearis skeletal muscle fro...

متن کامل

Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport.

The intracellular signaling proteins that lead to exercise-stimulated glucose transport in skeletal muscle have not been identified, although it is clear that there are separate signaling mechanisms for exercise- and insulin-stimulated glucose transport. We have hypothesized that the 5'AMP-activated protein kinase (AMPK) functions as a signaling intermediary in exercise-stimulated glucose uptak...

متن کامل

Regulation of glucose transport by the AMP-activated protein kinase.

The AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated during exercise and muscle contraction as a result of acute decreases in ATP:AMP and phosphocreatine:creatine. Physical exercise increases muscle glucose uptake, enhances insulin sensitivity and leads to fatty acid oxidation in muscle. An important issue in muscle biology is to understand whether AMPK plays a ...

متن کامل

A possible role for AMP-activated protein kinase in exercise-induced glucose utilization: insights from humans and transgenic animals.

Exercise-induced glucose uptake in skeletal muscle is mediated by an insulin-independent mechanism, but the actual signals to glucose transport in response to muscle contraction have not been identified. The 5'-AMP-activated protein kinase (AMPK) has emerged as a putative mediator of contraction-induced glucose transport, although no conclusive evidence has been provided so far. Recent experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 290 1  شماره 

صفحات  -

تاریخ انتشار 2006